On the coincidence of measure-based decomposition and superdecomposition integrals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00576150" target="_blank" >RIV/67985556:_____/23:00576150 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011422003736?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011422003736?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2022.09.001" target="_blank" >10.1016/j.fss.2022.09.001</a>
Alternative languages
Result language
angličtina
Original language name
On the coincidence of measure-based decomposition and superdecomposition integrals
Original language description
This paper introduces two types of preorders on the system of all non-empty sets of collections (i.e., the set of all decomposition systems) based on a fixed monotone measure mu. Each of them refines the previous two kinds of preorders of decomposition systems. By means of these two new preorders of decomposition systems we investigate the coincidences of decomposition integrals and that of superdecomposition integrals, respectively. The generalized integral equivalence theorem is shown in the general framework involving an ordered pair of decomposition systems. This generalized theorem includes as special cases all the previous results related to the coincidences among the Choquet integral, the concave (or convex) integral and the pan-integrals. Thus, a unified approach to the coincidences of several well-known decomposition and superdecomposition integrals is presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
1872-6801
Volume of the periodical
457
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
125-141
UT code for WoS article
000964635400001
EID of the result in the Scopus database
2-s2.0-85137852285