Existence results in large-strain magnetoelasticity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00576561" target="_blank" >RIV/67985556:_____/23:00576561 - isvavai.cz</a>
Result on the web
<a href="https://ems.press/journals/aihpc/articles/7168658" target="_blank" >https://ems.press/journals/aihpc/articles/7168658</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/AIHPC/51" target="_blank" >10.4171/AIHPC/51</a>
Alternative languages
Result language
angličtina
Original language name
Existence results in large-strain magnetoelasticity
Original language description
We investigate variational problems in large-strain magnetoelasticity, in both the static and the quasistatic settings. The model contemplates a mixed Eulerian–Lagrangian formulation: while deformations are defined on the reference configuration, magnetizations are defined on the deformed set in the actual space. In the static setting, we establish the existence of minimizers. In particular, we provide a compactness result for sequences of admissible states with equi-bounded energies which gives the convergence of the composition of magnetizations with deformations. In the quasistatic setting, we consider a notion of dissipation which is frame-indifferent and we show that the incremental minimization problem is solvable. Then we propose a regularization of the model in the spirit of gradient polyconvexity and we prove the existence of energetic solutions for the regularized model.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales de l'Institut Henri Poincaré. Analyse non Linéaire
ISSN
0294-1449
e-ISSN
1873-1430
Volume of the periodical
40
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
36
Pages from-to
557-592
UT code for WoS article
001023736600003
EID of the result in the Scopus database
2-s2.0-85166623030