Fan charts in era of big data and learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00581659" target="_blank" >RIV/67985556:_____/24:00581659 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/24:10482537 RIV/00216208:11230/24:10482537
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1544612324000333?dgcid=author" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1544612324000333?dgcid=author</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.frl.2024.105003" target="_blank" >10.1016/j.frl.2024.105003</a>
Alternative languages
Result language
angličtina
Original language name
Fan charts in era of big data and learning
Original language description
We propose how to construct big data-driven macroeconomic fan charts, using machine learning methods to reflect the information in 216 relevant economic variables. Such data-rich fan charts do not rely on restrictive model assumptions and allow the exploration of non-Gaussian, asymmetric, heavy-tailed data and their non-linear interactions. By allowing complex patterns to be learned from a data-rich environment, our fan charts are useful for decision making that depends on the uncertainty of a potentially large number of economic variables — most public policy issues.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50202 - Applied Economics, Econometrics
Result continuities
Project
<a href="/en/project/GX19-28231X" target="_blank" >GX19-28231X: DyMoDiF - Dynamic Models for the Digital Finance</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Finance Research Letters
ISSN
1544-6123
e-ISSN
1544-6131
Volume of the periodical
61
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
105003
UT code for WoS article
001170311200001
EID of the result in the Scopus database
2-s2.0-85183570255