Accuracy Comparison of Logistic Regression, Random Forest, and Neural Networks Applied to Real MaaS Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00587093" target="_blank" >RIV/67985556:_____/24:00587093 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10552715" target="_blank" >https://ieeexplore.ieee.org/document/10552715</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SCSP61506.2024.10552715" target="_blank" >10.1109/SCSP61506.2024.10552715</a>
Alternative languages
Result language
angličtina
Original language name
Accuracy Comparison of Logistic Regression, Random Forest, and Neural Networks Applied to Real MaaS Data
Original language description
The paper deals with a comparative analysis of three widely used data analysis methods: logistic regression, random forest, and neural networks. These methods have been evaluated in terms of accuracy, and computational efficiency and applied to different types of data sets, including both simulated and real MaaS data. The study aims to compare the efficiency of each method in classification tasks. The study leads to specific recommendations on which method to use under various circumstances, contributing to the decision-making process in data analysis projects. We have shown that random forests generally provide better accuracy and are resistant to over-training. Neural networks can achieve comparable performance under certain conditions, although at a high computational cost. Logistic regression shows limitations in dealing with complex data structures.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/8A21009" target="_blank" >8A21009: Embedded storage elements on next MCU generation ready for AI on the edge</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 Smart City Symposium Prague (SCSP)
ISBN
979-8-3503-6096-7
ISSN
2831-5618
e-ISSN
2691-3666
Number of pages
5
Pages from-to
—
Publisher name
IEEE
Place of publication
Danvers
Event location
Prague
Event date
May 23, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001258546700014