Bayesian methods in neural networks for inverse atmospheric modelling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00588431" target="_blank" >RIV/67985556:_____/24:00588431 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bayesian methods in neural networks for inverse atmospheric modelling
Original language description
Recovering a source and an amount of an emitted substance from distant measurement is an ill-posed problem. In this contribution, two methods based on Bayes theorem will be compared on a realistic toy problem with microplastics. First of them is a Bayesian neural network pretrained to mimic a lognormal process and second one is hierarchical variational model, where the parameters of the posterior distribution are modeled by a convolutional neural network. Both these approaches allow to incorporate spatial dependency of the locations of the source and offer an estimate of uncertainty to assess the reliability of the method.n
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA24-10400S" target="_blank" >GA24-10400S: Advanced Bayesian methods for estimation of atmospheric pollutant sources</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů