All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Identification of Piezoelectric Actuator Using Bayesian Approach and Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00601671" target="_blank" >RIV/67985556:_____/24:00601671 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0013011700003822" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0013011700003822</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0013011700003822" target="_blank" >10.5220/0013011700003822</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Identification of Piezoelectric Actuator Using Bayesian Approach and Neural Networks

  • Original language description

    The paper deals with a modelling and identification of a class of piezoelectric actuators intended for mechatronic and bio-inspired robotic applications. Specifically, a commercial piezoelectric bender PL140 from Physik Instrumente Co. is used. Considering catalogue/datasheet parameters, a physical model of PL140 is derived using Euler-Bernoulli beam theory. This model serves as a substitution of reality to generate proper data without potentially damaging the real actuator. However, due to its complex structure, this model cannot be used for control design. For this purpose, a Hammerstein model is proposed. It consists of a static nonlinear part describing the hysteresis and a dynamic linear part that is represented by the auto-regressive model with exogenous input (ARX model). The nonlinear part of the Hammerstein model is identified by a neural network. The Bayesian approach is used for the estimation of the ARX model parameters.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GC23-04676J" target="_blank" >GC23-04676J: Controllable gripping mechanics: Modelling, control and experiments</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics (ICINCO 2024)

  • ISBN

    978-989-758-717-7

  • ISSN

    2184-2809

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    591-599

  • Publisher name

    SCITEPRESS

  • Place of publication

    Setubal

  • Event location

    Porto

  • Event date

    Nov 18, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article