Identification of Piezoelectric Actuator Using Bayesian Approach and Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00601671" target="_blank" >RIV/67985556:_____/24:00601671 - isvavai.cz</a>
Result on the web
<a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0013011700003822" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0013011700003822</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0013011700003822" target="_blank" >10.5220/0013011700003822</a>
Alternative languages
Result language
angličtina
Original language name
Identification of Piezoelectric Actuator Using Bayesian Approach and Neural Networks
Original language description
The paper deals with a modelling and identification of a class of piezoelectric actuators intended for mechatronic and bio-inspired robotic applications. Specifically, a commercial piezoelectric bender PL140 from Physik Instrumente Co. is used. Considering catalogue/datasheet parameters, a physical model of PL140 is derived using Euler-Bernoulli beam theory. This model serves as a substitution of reality to generate proper data without potentially damaging the real actuator. However, due to its complex structure, this model cannot be used for control design. For this purpose, a Hammerstein model is proposed. It consists of a static nonlinear part describing the hysteresis and a dynamic linear part that is represented by the auto-regressive model with exogenous input (ARX model). The nonlinear part of the Hammerstein model is identified by a neural network. The Bayesian approach is used for the estimation of the ARX model parameters.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GC23-04676J" target="_blank" >GC23-04676J: Controllable gripping mechanics: Modelling, control and experiments</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics (ICINCO 2024)
ISBN
978-989-758-717-7
ISSN
2184-2809
e-ISSN
—
Number of pages
9
Pages from-to
591-599
Publisher name
SCITEPRESS
Place of publication
Setubal
Event location
Porto
Event date
Nov 18, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—