Continuity of Approximation by Neural Networks in Lp Spaces.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F01%3A06010005" target="_blank" >RIV/67985807:_____/01:06010005 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Continuity of Approximation by Neural Networks in Lp Spaces.
Original language description
Devices such as neural networks typically approximate the elements of some function space X by elements of a nontrivial finite union M of finite-dimensional spaces. Thus, no continuous finite neural network approximation can be within any positive constant of a best approximation in the Lp-norm.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F99%2F0092" target="_blank" >GA201/99/0092: Nonlinear approximation by neural networks</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Operations Research
ISSN
0254-5330
e-ISSN
—
Volume of the periodical
101
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
143-147
UT code for WoS article
—
EID of the result in the Scopus database
—