Bounds on Rates of Variable-Basis and Neural Network Approximation.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F01%3A06010015" target="_blank" >RIV/67985807:_____/01:06010015 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bounds on Rates of Variable-Basis and Neural Network Approximation.
Original language description
Tightness of bounds on rates of approximation by feedforward neural networks is investigated in a more general context of nonlinear approximation by variable-basis functions. Tight bounds on the worst case error in approximation by linear combinations ofn elements of an orthonormal variable basis are derived.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F1482" target="_blank" >GA201/00/1482: Approximation of functions by decision trees and its application in data analysis</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Information Theory
ISSN
—
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
2659-2665
UT code for WoS article
—
EID of the result in the Scopus database
—