Minimizing the Quadratic Training Error of a Sigmoid Neuron is Hard.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F01%3A06010079" target="_blank" >RIV/67985807:_____/01:06010079 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Minimizing the Quadratic Training Error of a Sigmoid Neuron is Hard.
Original language description
We first present a brief survey of hardness results for training feedforward neural networks. These results are then completed by the proof that the simplest architecture containing only a single neuron that applies the standard (logistic) activation function to the weighted sum of n inputs is hard to train. In particular,the problem of finding the weights of such a unit that minimize the relative quadratic training error within 1 or its average (over a training set) within 13/(31n) of its infimum proves...
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algorithmic Learning Theory.
ISBN
3-540-42875-5
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
92-105
Publisher name
Springer
Place of publication
Berlin
Event location
Washington [US]
Event date
Nov 25, 2001
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—