Application of Hopfield-Like Neural Networks to Linear Factorization.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F02%3A06020157" target="_blank" >RIV/67985807:_____/02:06020157 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Application of Hopfield-Like Neural Networks to Linear Factorization.
Original language description
The problem of binary factorization of complex patterns in reccurent Hopfield-like neural network was studied by means of computer simulation. The network ability to perform a factorization was analyzed depending on the number and sparsness of factors mixed in present patterns. Binary factorization in sparsely encoded Hopfield-like network is treated as efficient statistical method and as a functional model of hippocampal CA3 field.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
COMPSTAT 2002. Proceedings in Computational Statistics.
ISBN
3-7908-1517-9
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
177-182
Publisher name
Physica-Verlag
Place of publication
Heidelberg
Event location
Berlin [DE]
Event date
Aug 24, 2002
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—