To Contemplate Quantitative and Qualitative Water Features by Neural Networks Method.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F02%3A06030043" target="_blank" >RIV/67985807:_____/02:06030043 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
To Contemplate Quantitative and Qualitative Water Features by Neural Networks Method.
Original language description
An application deals with calibration of neural model and Fourier series model for Ploučnice catchment. A Stuttgart neural simulator SNNS and a multiagent hybrid system Bang2 developed in Institute of Computer Science, AS CR have been used for testing. Aperceptron network has been constructed, which is capable of an accurate forecast of the next day runoff based on the runoff and rainfall values from previous day.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAB1030006" target="_blank" >IAB1030006: Alternative learning procedures for reedforward neural networks</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Rostlinná výroba
ISSN
0370-663X
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
7
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
6
Pages from-to
322-326
UT code for WoS article
—
EID of the result in the Scopus database
—