All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Kernel Based Learning Methods: Regularization Networks and RBF Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F05%3A00339944" target="_blank" >RIV/67985807:_____/05:00339944 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Kernel Based Learning Methods: Regularization Networks and RBF Networks

  • Original language description

    We discuss two kernel based learning methods, the Regularization Networks and the RBF networks. We demonstrate the performance of both approaches on experiments. We claim that RN and RBF networks are comparable in terms of generalization error, so the RBF networks can be used as a 'cheaper' alternative.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1ET100300419" target="_blank" >1ET100300419: Intelligent Models, Algorithms, Methods and Tools for the Semantic Web (realization)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Deterministic and Statistical Methods in Machine Learning

  • ISBN

    3-540-29073-7

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Sheffield

  • Event date

    Sep 7, 2004

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000233290600008