Rounding Error Analysis of the Classical Gram-Schmidt Orthogonalization Process
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F05%3A00405259" target="_blank" >RIV/67985807:_____/05:00405259 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Rounding Error Analysis of the Classical Gram-Schmidt Orthogonalization Process
Original language description
This paper provides two results on the numerical behavior of the classical Gram-Schmidt algorithm. The first result states that, provided the normal equations associated with the initial vectors are numerically nonsingular, the loss of orthogonality of the vectors computed by the classical Gram-Schmidt algorithm depends quadratically on the condition number of the initial vectors. The second result states that, provided the initial set of vectors has numerical full rank, two iterations of the classicalGram-Schmidt algorithm are enough for ensuring the orthogonality of the computed vectors to be close to the unit roundoff level.
Czech name
Analýza zaokrouhlovacích chyb klasického Gram-Schmidtova ortogonalizačního procesu
Czech description
Článek obsahuje dva fundamentální výsledky týkající se numerické stability klasického Gram-Schmidtova ortogonalizačního procesu. První výsledek dává do souvislosti ztrátu ortogonality mezi vektory vypočtenými klasickou variantou Gram-Schmidtova procesu ačíslem podmíněnosti matice vektorů vstupujících do ortogonalizace. Ukazuje, že za předpokladu numerické nesingularity soustavy normálních rovnic je tato závislost kvadratická. Druhý výsledek ukazuje, že za předpokladu numerické plné hodnosti této matice, stačí dvě iterace klasické Gram-Schmidtova procesu k tomu, aby byla výsledná ortogonalita vypočtených vektorů na hladině strojové přesnosti dané aritmetiky.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerische Mathematik
ISSN
0029-599X
e-ISSN
—
Volume of the periodical
101
Issue of the periodical within the volume
-
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
87-100
UT code for WoS article
—
EID of the result in the Scopus database
—