All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extraction of Fuzzy Logic Rules from Data by Means of Artificial Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F05%3A00405527" target="_blank" >RIV/67985807:_____/05:00405527 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extraction of Fuzzy Logic Rules from Data by Means of Artificial Neural Networks

  • Original language description

    A method for the extraction of rules in a general fuzzy disjunctive normal form is described in detail and illustrated on real-world applications. Furter, the paper proposes an algorithm demonstrating a principal possibility to extract fuzzy logic rulesfrom multilayer perceptrons with continuous activation functions, i.e., from the kind of neural networks most universally used in applications. However, complexity analysis of the individual steps of that algorithm reveals that it involves computations with doubly-exponential complexity, due to which it can not without simplifications serve as a practically applicable alternative to methods based on specialized neural networks.

  • Czech name

    Extrakce pravidel fuzzy logiky z dat pomocí umělých neuronových sítí

  • Czech description

    Detailně je diskutována a na reálných datech ilustrována metoda pro extrakci pravidel v obecné fuzzy disjunktivní normální formě. Dále článek navrhuje algoritmus demonstrující principiální možnost extrakce pravidel fuzzy logiky z vícevrstvých perceptronů, tj. onoho typu neuronových sítí, který se v aplikacích používá nejuniverzálněji. Avšak analýza komplexity jednotlivých kroků tohoto algoritmu ukazuje, že zahrnuje výpočty s dvojitě exponenciální přesností, díky čemuž algoritmus nemůže bez zjednodušenísloužit jako použitelná alternativa k metodám extrakce založeným na specializovaných neuronových sítích.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA1030004" target="_blank" >IAA1030004: Mathematical foundations of inference under vagueness and uncertainty</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Volume of the periodical

    41

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    18

  • Pages from-to

    297-314

  • UT code for WoS article

  • EID of the result in the Scopus database