All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exploiting Tensor Rank-One Decomposition in Probabilistic Inference

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F07%3A00047082" target="_blank" >RIV/67985807:_____/07:00047082 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985556:_____/07:00047082

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exploiting Tensor Rank-One Decomposition in Probabilistic Inference

  • Original language description

    We propose a new additive decomposition of probability tables - tensor rank-one decomposition. The basic idea is to decompose a probability table into a series of tables, such that the table that is the sum of the series is equal to the original table. Each table in the series has the same domain as the original table but can be expressed as a product of one-dimensional tables. Entries in tables are allowed to be any real number, i.e. they can be also negative numbers. The possibility of having negativenumbers, in contrast to a multiplicative decomposition, opens new possibilities for a compact representation of probability tables. We show that tensor rank-one decomposition can be used to reduce the space and time requirements in probabilistic inference. We provide a closed form solution for minimal tensor rank-one decomposition for some special tables and propose a numerical algorithm that can be used in cases when the closed form solution is not known.

  • Czech name

    Využití rozkladu tenzoru na tenzory ranku jedna pro pravděpodobnostní inferenci

  • Czech description

    Navrhujeme nový součtový rozklad pravděpodobnostních tabulek - rozklad na tenzory ranku jedna. Základní myšlenka je, rozložit pravděpodobnostní tabulku na posloupnost tabulek, jejichž součet je roven původní tabulce. Každá z tabulek v posloupnosti má stejný obor indexů jako původní tabulka, ale je vyjádřitelná jako součin jednorozměrných tabulek. Prvky tabulek mohou být libovolná reálná čísla, tedy i čísla záporná. Ukazujeme, že rozklad na tenzory ranku jedna může být použit pro zmenšení prostorové a časové složitosti pravděpodobnostní inference. Článek prezentuje explicitní vyjádření minimálního rozkladu některých speciálních tabulek a navrhuje numerickou metodu řešení v případě, že explicitní rozklad není znám.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BD - Information theory

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Volume of the periodical

    43

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    18

  • Pages from-to

    747-764

  • UT code for WoS article

  • EID of the result in the Scopus database