Hybrid Evolutionary Algorithm for Multilayer Perceptron Networks with Competetive Performance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F07%3A00088599" target="_blank" >RIV/67985807:_____/07:00088599 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hybrid Evolutionary Algorithm for Multilayer Perceptron Networks with Competetive Performance
Original language description
Hybrid models combining neural networks and genetic algorithms have been studied recently with the goal of achieving either better performance of the resulting network or faster training. In this paper we deal with variants of genetic learning applied for the structure optimization and weights evolution of multi-layer perceptron networks. Several genetic operators are tested, including memetic-type local search, that produce good results in terms of network performace. It is shown, that combining evolutionary algorithms with neural networks can lead to better results than relying on neural networks alone in terms of the quality of the solution (both training and generalization error). Comparison to gradient algorithms in terms of time complexity is discussed which does not bring overly optimistic results sometimes met in literature.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1ET100300419" target="_blank" >1ET100300419: Intelligent Models, Algorithms, Methods and Tools for the Semantic Web (realization)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Evolutionary Computation
ISBN
978-1-4244-1339-3
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
IEEE
Place of publication
Los Alamitos
Event location
Singapore
Event date
Sep 25, 2007
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000256053701029