Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F07%3A00088772" target="_blank" >RIV/67985807:_____/07:00088772 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach
Original language description
A method is described for obtaining conjunctive normal forms for logics using Gentzen-style rules possessing a special kind of strong invertibility. This method is then applied to a number of prominent fuzzy logics using hypersequent rules adapted from calculi defined in the literature. In particular, a normal form with simple McNaughton functions as literals is generated for łukasiewicz logic, and normal forms with simple implicational formulas as literals are obtained for Gödel logic, Product logic, and Cancellative hoop logic.
Czech name
Normální formy ve fuzzy logikách: důkazově-teoretický přístup
Czech description
Je popsána metoda konstrukce konjunktivní normální formy pro logiky s Gentzenovským důkazovým systémem, jež vykazuje vlastnost tzv. silné invertibility. Tato metoda je aplikována na řadu prominentních fuzzy logik a jejich hypersekventových systémů popsaných v literatuře. Konkrétně, pro Lukasiewiczovu logiku konstruujeme normální formu s literály intepretovanými pomocí tzv. jednoduchých McNaughtonovských funkcí, pro Godelovu a produktovou logiky (a také pro logiku CHL) konstruujeme normální formu s literály ve formě jednoduchých implikačních formulí.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
1432-0665
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
5-6
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
347-363
UT code for WoS article
—
EID of the result in the Scopus database
—