All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of Neural Network Boolean Factor Analysis Method with Some Other Dimension Reduction Methods on Bars Problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F07%3A00091120" target="_blank" >RIV/67985807:_____/07:00091120 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27240/07:00017860

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of Neural Network Boolean Factor Analysis Method with Some Other Dimension Reduction Methods on Bars Problem

  • Original language description

    In this paper, we compare performance of novel neural network based algorithm for Boolean factor analysis with several dimension reduction techniques as a tool for feature extraction. Compared are namely singular value decomposition, semi-discrete decomposition and non-negative matrix factorization algorithms, including some cluster analysis methods as well. Even if the mainly mentioned methods are linear, it is interesting to compare them with neural network based Boolean factor analysis, because theyare well elaborated. Second reason for this is to show basic differences between Boolean and linear case. So called bars problem is used as the benchmark. Set of artificial signals generated as a Boolean sum of given number of bars is analyzed by these methods. Resulting images show that Boolean factor analysis is upmost suitable method for this kind of data.

  • Czech name

    Srovnání na neuronovém přístupu založené Booleavské faktorové analýzy a dalších metod pro redukci dimenze na problému kolmých protínajících se linií

  • Czech description

    Porovnán je nový algoritmus pro Booleovskou faktorovou analýzu s několika dalšími metodami pro redukci dimenze jako možného nástroje pro extrakci příznaků. Porovnávány jsou zejména metody SVD, FastMap, SDD, NMF včetně některých metod shlukové analýzy. Pro hodnocení je použita referenční úloha separace kolmých linií (tzv. Bar Problem). Je ukázáno, že Booleovská faktorová analýza je ze své podstaty nejvhodnější nástroj tento typ dat.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Pattern Recognition and Machine Intelligence

  • ISBN

    978-3-540-77045-9

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    235-243

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Kolkata

  • Event date

    Dec 18, 2007

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article