Comparison of Neural Network Boolean Factor Analysis Method with Some Other Dimension Reduction Methods on Bars Problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F07%3A00091120" target="_blank" >RIV/67985807:_____/07:00091120 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/07:00017860
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Comparison of Neural Network Boolean Factor Analysis Method with Some Other Dimension Reduction Methods on Bars Problem
Original language description
In this paper, we compare performance of novel neural network based algorithm for Boolean factor analysis with several dimension reduction techniques as a tool for feature extraction. Compared are namely singular value decomposition, semi-discrete decomposition and non-negative matrix factorization algorithms, including some cluster analysis methods as well. Even if the mainly mentioned methods are linear, it is interesting to compare them with neural network based Boolean factor analysis, because theyare well elaborated. Second reason for this is to show basic differences between Boolean and linear case. So called bars problem is used as the benchmark. Set of artificial signals generated as a Boolean sum of given number of bars is analyzed by these methods. Resulting images show that Boolean factor analysis is upmost suitable method for this kind of data.
Czech name
Srovnání na neuronovém přístupu založené Booleavské faktorové analýzy a dalších metod pro redukci dimenze na problému kolmých protínajících se linií
Czech description
Porovnán je nový algoritmus pro Booleovskou faktorovou analýzu s několika dalšími metodami pro redukci dimenze jako možného nástroje pro extrakci příznaků. Porovnávány jsou zejména metody SVD, FastMap, SDD, NMF včetně některých metod shlukové analýzy. Pro hodnocení je použita referenční úloha separace kolmých linií (tzv. Bar Problem). Je ukázáno, že Booleovská faktorová analýza je ze své podstaty nejvhodnější nástroj tento typ dat.
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Pattern Recognition and Machine Intelligence
ISBN
978-3-540-77045-9
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
235-243
Publisher name
Springer
Place of publication
Berlin
Event location
Kolkata
Event date
Dec 18, 2007
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—