Approximate Minimization of the Regularized Expected Error over Kernel Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F08%3A00043647" target="_blank" >RIV/67985807:_____/08:00043647 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Approximate Minimization of the Regularized Expected Error over Kernel Models
Original language description
Learning from data under constraints on model complexity is studied in terms of rates of approximate minimization of the regularized expected error functional. For kernel models with an increasing number n of kernel functions, upper bounds on such ratesare derived. The bounds are of the form a/n+b/sqrt(n], where a and b depend on the regularization parameter and on properties of the kernel, and of the probability measure defining the expected error. As a special case, estimates of rates of approximateminimization of the regularized empirical error are derived.
Czech name
Přibližná minimalizace regularizovaného funkcionálu očekávané chyby na jádrových modelech
Czech description
Učení na základě dat s omezením modelové složitosti je studováno pomocí rychlosti přibližné minimalizace regularizovaného funkcionálu očekávané chyby. Pro jádrové modely s rostoucím počtem n jádrových funkcí jsou odvozeny horní odhady této rychlosti.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics of Operations Research
ISSN
0364-765X
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
—
UT code for WoS article
000258881200013
EID of the result in the Scopus database
—