All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning Random Numbers: A Matlab Anomaly

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F08%3A00310680" target="_blank" >RIV/67985807:_____/08:00310680 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning Random Numbers: A Matlab Anomaly

  • Original language description

    The paper describes how dependencies between random numbers generated with some popular pseudorandom number generators can be detected using general purpose machine-learning techniques. This is a novel approach, since usually pseudo-random number generators are evaluated using tests specifically designed for this purpose. Such specific tests are more sensitive. Hence, detecting the dependence using machine-learning methods implies that the dependence is indeed very strong. The most important example ofa generator, where dependencies may easily be found using our approach, is MATLAB?s function rand if the method state is used. This method was the default in MATLAB versions between 5 (1995) and 7.3 (2006b), i.e., for more than 10 years. In order to evaluate the strength of the dependence in it, we used the same machine-learning tools to detect dependencies in some other random number generators, which are known to be bad or insufficient for large simulations.

  • Czech name

    Učení náhodných čísel: anomálie v Matlabu

  • Czech description

    Článek popisuje, jak mohou být v některých známých generátorech náhodných čísel detekovány závislosti pomocí obecných nástrojů strojového učení. Jde o nový přístup, protože pseudonáhodné generátory jsou obvykle posuzovány pomocí testů specificky určenýchpro tento účel. Tyto specifické testy jsou citlivější, proto možnost detekce závislostí pomocí metod strojového učení implikuje, že jde o velmi silné závislosti. Nejdůležitější příklad generátoru, ve kterém lze závislosti snadno najít pomocí našeho přístupu, je funkce rand v MATLAB, pokud je použita metoda state. Tato metoda byla výchozí metodou ve verzích MATLAB mezi 5 (1995) a 7.3 (2006b), tedy více než 10 let. Pro posouzení síly této závislosti jsme použili stejné nástroje strojového učení k detekcizávislostí v dalších generátorech, o kterých je známo, že jsou špatné nebo nedostatečné pro rozsáhlejší simulace.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1ET100300517" target="_blank" >1ET100300517: Methods for Intelligent Systems and Their Applications in Datamining and Natural Language Processing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Artificial Intelligence

  • ISSN

    0883-9514

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000254579900005

  • EID of the result in the Scopus database