Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00321649" target="_blank" >RIV/67985807:_____/09:00321649 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering
Original language description
Neural network based algorithm for word clustering as an extension of the neural network based Boolean factor analysis algorithm is introduced. Technique based on a Bayesian procedure has been developed to provide a complete description of factors in terms of component probability and to enhance the accuracy of classification of documents. Method is applied to two types of textual data on Neural Networks in two different languages.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Neural Networks
ISSN
1045-9227
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
—
UT code for WoS article
000267941800002
EID of the result in the Scopus database
—