All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Genetic Algorithms For the Linear Ordering Problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00326657" target="_blank" >RIV/67985807:_____/09:00326657 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27240/09:00020979

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Genetic Algorithms For the Linear Ordering Problem

  • Original language description

    Linear ordering problem is a well-known optimization problem attractive for its complexity (it is an NP-hard problem), rich library of test data and variety of real world applications. In this paper, we investigate the use and performance of two variantsof genetic algorithms, mutation only genetic algorithms and higher level chromosome genetic algorithm, on the linear ordering problem. Both methods are tested and evaluated on a library of real world and artificial linear ordering problem instances.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA102%2F09%2F1494" target="_blank" >GA102/09/1494: New methods od data transmition based on turbo code</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000264426400005

  • EID of the result in the Scopus database