Boosted Surrogate Models in Evolutionary Optimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00330006" target="_blank" >RIV/67985807:_____/09:00330006 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Boosted Surrogate Models in Evolutionary Optimization
Original language description
The paper deals with surrogate modelling, a modern approach to the optimization of empirical objective functions. The approach leads to a substantial decrease of time and costs of evaluation of the objective function, a property that is particularly attractive in evolutionary optimization. In the paper, an extension of surrogate modelling with regression boosting is proposed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F1744" target="_blank" >GA201/08/1744: Complexity of perceptron and kernel networks</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Information Technologies - Applications and Theory
ISBN
978-80-970179-2-7
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
Pont
Place of publication
Seňa
Event location
Kráľova studňa
Event date
Sep 25, 2009
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—