All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary Optimization of Catalysts Assisted by Neural-Network Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00351863" target="_blank" >RIV/67985807:_____/10:00351863 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary Optimization of Catalysts Assisted by Neural-Network Learning

  • Original language description

    This paper presents an important real-world application of both evolutionary computation and learning, an application to the search for optimal catalytic materials. In this area, evolutionary and especially genetic algorithms are encountered most frequently. However, their application is far from any standard methodology, due to problems with mixed optimization and constraints. The paper describes how these difficulties are dealt with in the evolutionary optimization system GENACAT, recently developed for searching optimal catalysts. It also recalls that the costly evaluation of objective functions in this application area can be tackled through learning suitable regression models of those functions, called surrogate models. Ongoing integration of neural-networks-based surrogate modelling with GENACAT is illustrated on two brief examples.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Simulated Evolution and Learning

  • ISBN

    978-3-642-17297-7

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Kanpur

  • Event date

    Dec 1, 2010

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000289185200023