Dominant matrices and max algebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00351435" target="_blank" >RIV/67985807:_____/11:00351435 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Dominant matrices and max algebra
Original language description
We study the class of so-called totally dominant matrices in the usual algebra and in the max algebra in which the sum is the maximum and the multiplication is usual. It turns out that this class coincides with the well known class of positive matrices having positive the determinants of all 22 submatrices. The closure of this class is closed not only with respect to the usual but also with respect to the max multiplication. Further properties analogous to those of totally positive matrices are proved and some connections to Monge matrices are mentioned. Keywords: Totally positive matrix; Factorization; Monge matrix; (0,1) matrix
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
434
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
—
UT code for WoS article
000286864300023
EID of the result in the Scopus database
—