All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Static Load Balancing of Parallel Mining of Frequent Itemsets Using Reservoir Sampling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00368102" target="_blank" >RIV/67985807:_____/11:00368102 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-23199-5_41" target="_blank" >http://dx.doi.org/10.1007/978-3-642-23199-5_41</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-23199-5_41" target="_blank" >10.1007/978-3-642-23199-5_41</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Static Load Balancing of Parallel Mining of Frequent Itemsets Using Reservoir Sampling

  • Original language description

    In this paper, we present a novel method for parallelization of an arbitrary depth-first search (DFS in short) algorithm for mining of all FIs. The method is based on the so called reservoir sampling algorithm. The reservoir sampling algorithm in combination with an arbitrary DFS mining algorithm executed on a database sample takes an uniformly but not independently distributed sample of all FIs using the reservoir sampling. The sample is then used for static load-balancing of the computational load ofa DFS algorithm for mining of all FIs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F10%2F1333" target="_blank" >GAP202/10/1333: NoSCoM: Non-Standard Computational Models and Their Applications in Complexity, Linguistics, and Learning</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Learning and Data Mining in Pattern Recognition

  • ISBN

    978-3-642-23198-8

  • ISSN

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    553-567

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    New York

  • Event date

    Aug 30, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article