Expectation-Maximization Approach to Boolean Factor Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00368431" target="_blank" >RIV/67985807:_____/11:00368431 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/IJCNN.2011.6033270" target="_blank" >http://dx.doi.org/10.1109/IJCNN.2011.6033270</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN.2011.6033270" target="_blank" >10.1109/IJCNN.2011.6033270</a>
Alternative languages
Result language
angličtina
Original language name
Expectation-Maximization Approach to Boolean Factor Analysis
Original language description
Methods for hidden structure of high-dimensional binary data discovery are one of the most important challenges facing machine learning community researchers. There are many approaches in literature that try to solve this hitherto rather ill-defined task. In the present study, we propose a most general generative model of binary data for Boolean factor analysis and introduce new Expectation-Maximization Boolean Factor Analysis algorithm which maximizes likelihood of Boolean Factor Analysis solution. Using the so-called bars problem benchmark, we compare efficiencies of Expectation-Maximization Boolean Factor Analysis algorithm with Dendritic Inhibition neural network. Then we discuss advantages and disadvantages of both approaches as regards results quality and methods efficiency.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IJCNN 2011 Conference Proceedings
ISBN
978-1-4244-9636-5
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
559-566
Publisher name
IEEE
Place of publication
Piscataway
Event location
San Jose
Event date
Jul 31, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000297541200080