Utilization of Singularity Exponent in Nearest Neighbor Based Classifier
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00375796" target="_blank" >RIV/67985807:_____/13:00375796 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21460/13:00214975
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Utilization of Singularity Exponent in Nearest Neighbor Based Classifier
Original language description
Classifiers serve as tools for classifying data into classes. They directly or indirectly take a distribution of data points around a given query point into account. To express the distribution of points from the viewpoint of distances from a given point, a probability distribution mapping function is introduced here. The approximation of this function in a form of a suitable power of the distance is presented. How to state this power - the distribution mapping exponent -- is described. This exponent isused for probability density estimation in high-dimensional spaces and for classification. A close relation of the exponent to a singularity exponent is discussed. It is also shown that this classifier exhibits significantly better behavior (classification accuracy) than other kinds of classifiers for some tasks.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Classification
ISSN
0176-4268
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
3-29
UT code for WoS article
000315441300002
EID of the result in the Scopus database
—