All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Low-Energy Implementation of Finite Automata by Optimal-Size Neural Nets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00392404" target="_blank" >RIV/67985807:_____/13:00392404 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-40728-4_15" target="_blank" >http://dx.doi.org/10.1007/978-3-642-40728-4_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-40728-4_15" target="_blank" >10.1007/978-3-642-40728-4_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Low-Energy Implementation of Finite Automata by Optimal-Size Neural Nets

  • Original language description

    Recently, a new so-called energy complexity measure has been introduced and studied for feedforward perceptron networks. This measure is inspired by the fact that biological neurons require more energy to transmit a spike than not to fire and the activity of neurons in the brain is quite sparse, with only about 1% of neurons firing. We investigate the energy complexity for recurrent networks which bounds the number of active neurons at any time instant of a computation. We prove that any deterministic finite automaton with m states can be simulated by a neural network of optimal size s=Theta(sqrt{m}) with time overhead O(s/e) per one input bit, using the energy O(e), for any e=Omega(log s) and e=O(s), which shows the time-energy tradeoff in recurrent networks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F10%2F1333" target="_blank" >GAP202/10/1333: NoSCoM: Non-Standard Computational Models and Their Applications in Complexity, Linguistics, and Learning</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning - ICANN 2013

  • ISBN

    978-3-642-40727-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    114-121

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Sofia

  • Event date

    Sep 10, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article