All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Properties of Worst-Case GMRES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00421797" target="_blank" >RIV/67985807:_____/13:00421797 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/13091066X" target="_blank" >http://dx.doi.org/10.1137/13091066X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/13091066X" target="_blank" >10.1137/13091066X</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Properties of Worst-Case GMRES

  • Original language description

    In the convergence analysis of the GMRES method for a given matrix A, one quantity of interest is the largest possible residual norm that can be attained, at a given iteration step k, over all unit norm initial vectors. This quantity is called the worst-case GMRES residual norm for A and k. We show that the worst case behavior of GMRES for the matrices A and A transposed is the same, and we analyze properties of initial vectors for which the worst-case residual norm is attained. In particular, we provethat such vectors satisfy a certain "cross equality". We show that the worst-case GMRES polynomial may not be uniquely determined, and we consider the relation between the worst-case and the ideal GMRES approximations, giving new examples in which the inequality between the two quantities is strict at all iteration steps k greater than 3.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-06684S" target="_blank" >GA13-06684S: Iterative Methods in Computational Mathematics: Analysis, Preconditioning, and Applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    1500-1519

  • UT code for WoS article

    000328902900004

  • EID of the result in the Scopus database