All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Performance of classification confidence measures in dynamic classifier systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00423771" target="_blank" >RIV/67985807:_____/13:00423771 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Performance of classification confidence measures in dynamic classifier systems

  • Original language description

    Classifier combining is a popular technique for improving classification quality. Common methods for classifier combining can be further improved by using dynamic classification confidence measures which adapt to the currently classified pattern. However, in the case of dynamic classifier systems, the classification confidence measures need to be studied in a broader context as we show in this paper, the degree of consensus of the whole classifier team plays a key role in the process. We discuss the properties which should hold for a good confidence measure, and we define two methods for predicting the feasibility of a given classification confidence measure to a given classifier team and given data. Experimental results on 6 artificial and 20 real-world benchmark datasets show that for both methods, there is a statistically significant correlation between the feasibility of the measure, and the actual improvement in classification accuracy of the whole classifier system; therefore, bo

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-17187S" target="_blank" >GA13-17187S: Constructing Advanced Comprehensible Classifiers</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    21

  • Pages from-to

    299-319

  • UT code for WoS article

    000325193300003

  • EID of the result in the Scopus database