Performance of classification confidence measures in dynamic classifier systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00423771" target="_blank" >RIV/67985807:_____/13:00423771 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Performance of classification confidence measures in dynamic classifier systems
Original language description
Classifier combining is a popular technique for improving classification quality. Common methods for classifier combining can be further improved by using dynamic classification confidence measures which adapt to the currently classified pattern. However, in the case of dynamic classifier systems, the classification confidence measures need to be studied in a broader context as we show in this paper, the degree of consensus of the whole classifier team plays a key role in the process. We discuss the properties which should hold for a good confidence measure, and we define two methods for predicting the feasibility of a given classification confidence measure to a given classifier team and given data. Experimental results on 6 artificial and 20 real-world benchmark datasets show that for both methods, there is a statistically significant correlation between the feasibility of the measure, and the actual improvement in classification accuracy of the whole classifier system; therefore, bo
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-17187S" target="_blank" >GA13-17187S: Constructing Advanced Comprehensible Classifiers</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
21
Pages from-to
299-319
UT code for WoS article
000325193300003
EID of the result in the Scopus database
—