On the Structure of Special Classes of Uninorms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00396682" target="_blank" >RIV/67985807:_____/14:00396682 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/14:00107058
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2013.09.013" target="_blank" >http://dx.doi.org/10.1016/j.fss.2013.09.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2013.09.013" target="_blank" >10.1016/j.fss.2013.09.013</a>
Alternative languages
Result language
angličtina
Original language name
On the Structure of Special Classes of Uninorms
Original language description
In this paper, the concept of the Reidemeister closure condition is adopted in order to characterize associativity of uninorms with a special attention paid to the class of representable uninorms. Thus, conditions replacing the associativity requirementfor such uninorms are given. Further, the attention if focused on the uninorms where the underlying t-norm and t-conorm is idempotent or induce an involutive negator. Based on the aforementioned results, the structure of these classes of uninorms is fully described.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP201%2F12%2FP055" target="_blank" >GPP201/12/P055: Geometry of associative structures</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
240
Issue of the periodical within the volume
1 April
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
22-38
UT code for WoS article
000333946100002
EID of the result in the Scopus database
—