Classification Methods for High-Dimensional Genetic Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00427225" target="_blank" >RIV/67985807:_____/14:00427225 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.bbe.2013.09.007" target="_blank" >http://dx.doi.org/10.1016/j.bbe.2013.09.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bbe.2013.09.007" target="_blank" >10.1016/j.bbe.2013.09.007</a>
Alternative languages
Result language
angličtina
Original language name
Classification Methods for High-Dimensional Genetic Data
Original language description
Standard methods of multivariate statistics fail in the analysis of high-dimensional data. This paper gives an overview of recent classification methods proposed for the analysis of high-dimensional data, especially in the context of molecular genetics.We discuss methods of both biostatistics and data mining based on various background, explain their principles, and compare their advantages and limitations. We also include dimension reduction methods tailor-made for classification analysis and also such classification methods which reduce the dimension of the computation intrinsically. A common feature of numerous classification methods is the shrinkage estimation principle, which has obtained a recent intensive attention in high-dimensional applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biocybernetics and Biomedical Engineering
ISSN
0208-5216
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
9
Pages from-to
10-18
UT code for WoS article
000333226500003
EID of the result in the Scopus database
—