All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification Methods for High-Dimensional Genetic Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00427225" target="_blank" >RIV/67985807:_____/14:00427225 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.bbe.2013.09.007" target="_blank" >http://dx.doi.org/10.1016/j.bbe.2013.09.007</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bbe.2013.09.007" target="_blank" >10.1016/j.bbe.2013.09.007</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification Methods for High-Dimensional Genetic Data

  • Original language description

    Standard methods of multivariate statistics fail in the analysis of high-dimensional data. This paper gives an overview of recent classification methods proposed for the analysis of high-dimensional data, especially in the context of molecular genetics.We discuss methods of both biostatistics and data mining based on various background, explain their principles, and compare their advantages and limitations. We also include dimension reduction methods tailor-made for classification analysis and also such classification methods which reduce the dimension of the computation intrinsically. A common feature of numerous classification methods is the shrinkage estimation principle, which has obtained a recent intensive attention in high-dimensional applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biocybernetics and Biomedical Engineering

  • ISSN

    0208-5216

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    9

  • Pages from-to

    10-18

  • UT code for WoS article

    000333226500003

  • EID of the result in the Scopus database