All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparing Fixed and Variable-Width Gaussian Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00428366" target="_blank" >RIV/67985807:_____/14:00428366 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.neunet.2014.05.005" target="_blank" >http://dx.doi.org/10.1016/j.neunet.2014.05.005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neunet.2014.05.005" target="_blank" >10.1016/j.neunet.2014.05.005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparing Fixed and Variable-Width Gaussian Networks

  • Original language description

    The role of width of Gaussians in two types of computational models is investigated: Gaussian radial basis- functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of widthon functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHSs)is explored. It is proven that if two Gaussian RBF networks have the same input?output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input?output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by flatter?? Gaussians into RKHSs induced by sharper?? Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functiona

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LD13002" target="_blank" >LD13002: Modeling of complex systems for softcomputing methods</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Networks

  • ISSN

    0893-6080

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    September

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    6

  • Pages from-to

    23-28

  • UT code for WoS article

    000340319400003

  • EID of the result in the Scopus database