All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Complexity of Shallow Networks Representing Finite Mappings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00443724" target="_blank" >RIV/67985807:_____/15:00443724 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-19324-3_4" target="_blank" >http://dx.doi.org/10.1007/978-3-319-19324-3_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-19324-3_4" target="_blank" >10.1007/978-3-319-19324-3_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Complexity of Shallow Networks Representing Finite Mappings

  • Original language description

    Complexity of shallow (one-hidden-layer) networks representing finite multivariate mappings is investigated. Lower bounds are derived on growth of numbers of network units and sizes of output weights in terms of variational norms of mappings to be represented. Probability distributions of mappings whose computations require large networks are described. It is shown that due to geometrical properties of highdimensional Euclidean spaces, representation of almost any randomly chosen function on a sufficiently large domain by a shallow network with perceptrons requires untractably large network. Concrete examples of such functions are constructed using Hadamard matrices.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-18108S" target="_blank" >GA15-18108S: Model complexity of neural, radial, and kernel networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence and Soft Computing

  • ISBN

    978-3-319-19323-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    39-48

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Zakopane

  • Event date

    Jun 12, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000364537800004