A Robust Supervised Variable Selection for Noisy High-Dimensional Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00444727" target="_blank" >RIV/67985807:_____/15:00444727 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21460/15:00231271
Result on the web
<a href="http://dx.doi.org/10.1155/2015/320385" target="_blank" >http://dx.doi.org/10.1155/2015/320385</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2015/320385" target="_blank" >10.1155/2015/320385</a>
Alternative languages
Result language
angličtina
Original language name
A Robust Supervised Variable Selection for Noisy High-Dimensional Data
Original language description
The Minimum Redundancy Maximum Relevance (MRMR) approach to supervised variable selection represents a successful methodology for dimensionality reduction, which is suitable for high-dimensional data observed in two or more different groups. Various available versions of the MRMR approach have been designed to search for variables with the largest relevance for a classification task while controlling for redundancy of the selected set of variables. However, usual relevance and redundancy criteria have the disadvantages of being too sensitive to the presence of outlying measurements and/or being inefficient. We propose a novel approach called Minimum Regularized Redundancy Maximum Robust Relevance (MRRMRR), suitable for noisy high-dimensional data observed in two groups. It combines principles of regularization and robust statistics. Particularly, redundancy is measured by a new regularized version of the coefficient of multiple correlation and relevance is measured by a highly robust c
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-17187S" target="_blank" >GA13-17187S: Constructing Advanced Comprehensible Classifiers</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BioMed Research International
ISSN
2314-6133
e-ISSN
—
Volume of the periodical
2015
Issue of the periodical within the volume
Article 320385
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
—
UT code for WoS article
000356261700001
EID of the result in the Scopus database
2-s2.0-84934967829