All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Robust Supervised Variable Selection for Noisy High-Dimensional Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00444727" target="_blank" >RIV/67985807:_____/15:00444727 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21460/15:00231271

  • Result on the web

    <a href="http://dx.doi.org/10.1155/2015/320385" target="_blank" >http://dx.doi.org/10.1155/2015/320385</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1155/2015/320385" target="_blank" >10.1155/2015/320385</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Robust Supervised Variable Selection for Noisy High-Dimensional Data

  • Original language description

    The Minimum Redundancy Maximum Relevance (MRMR) approach to supervised variable selection represents a successful methodology for dimensionality reduction, which is suitable for high-dimensional data observed in two or more different groups. Various available versions of the MRMR approach have been designed to search for variables with the largest relevance for a classification task while controlling for redundancy of the selected set of variables. However, usual relevance and redundancy criteria have the disadvantages of being too sensitive to the presence of outlying measurements and/or being inefficient. We propose a novel approach called Minimum Regularized Redundancy Maximum Robust Relevance (MRRMRR), suitable for noisy high-dimensional data observed in two groups. It combines principles of regularization and robust statistics. Particularly, redundancy is measured by a new regularized version of the coefficient of multiple correlation and relevance is measured by a highly robust c

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-17187S" target="_blank" >GA13-17187S: Constructing Advanced Comprehensible Classifiers</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    BioMed Research International

  • ISSN

    2314-6133

  • e-ISSN

  • Volume of the periodical

    2015

  • Issue of the periodical within the volume

    Article 320385

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000356261700001

  • EID of the result in the Scopus database

    2-s2.0-84934967829