Three Contributions to Robust Regression Diagnostics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00456162" target="_blank" >RIV/67985807:_____/15:00456162 - isvavai.cz</a>
Result on the web
<a href="http://www.degruyter.com/view/j/jamsi.2015.11.issue-2/jamsi-2015-0013/jamsi-2015-0013.xml?format=INT" target="_blank" >http://www.degruyter.com/view/j/jamsi.2015.11.issue-2/jamsi-2015-0013/jamsi-2015-0013.xml?format=INT</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Three Contributions to Robust Regression Diagnostics
Original language description
Robust regression methods have been developed not only as a diagnostic tool for standard least squares estimation in statistical and econometric applications, but can be also used as self-standing regression estimation procedures. Therefore, they need tobe equipped by their own diagnostic tools. This paper is devoted to robust regression and presents three contributions to its diagnostic tools or estimating regression parameters under non-standard conditions. Firstly, we derive the Durbin-Watson test of independence of random regression errors for the regression median. The approach is based on the approximation to the exact null distribution of the test statistic. Secondly, we accompany the least trimmed squares estimator by a subjective criterion for selecting a suitable value of the trimming constant. Thirdly, we propose a robust version of the instrumental variables estimator. The new methods are illustrated on examples with real data and their advantages and limitations are discu
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of applied mathematics, statistics and informatics
ISSN
1336-9180
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
2
Country of publishing house
SK - SLOVAKIA
Number of pages
10
Pages from-to
69-78
UT code for WoS article
—
EID of the result in the Scopus database
—