All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Covariance Modeling by Means of Eigenfunctions of Laplace Operator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00457014" target="_blank" >RIV/67985807:_____/15:00457014 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Covariance Modeling by Means of Eigenfunctions of Laplace Operator

  • Original language description

    Large dimension of both state vector and data is a well-known challenge in environmental modeling (e.g., numerical weather forecast) and, in particular, in data assimilation. The Ensemble Kalman Filter addresses this problem by estimating the current system state and its uncertainty via their sample counterparts. However, sample covariance matrix based on a small ensemble is not a sufficiently good estimate of the true covariance. In this paper, we deal with techniques relying on transformation of the state to the spectral space and assuming a particular covariance structure based on the Laplace operator. Parameters, which this special structure depends on, are estimated by a least squares method and a maximum likelihood method. The behavior of both estimators is illustrated by a simulation. Both methods have a smaller error in Frobenius norm than the sample covariance, moreover, the latter method performs better than the former one, which corresponds to its stronger assumptions.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-34856S" target="_blank" >GA13-34856S: Advanced random field methods in data assimilation for short-term weather prediction</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    JSM 2015 Proceedings

  • ISBN

    978-0-9839375-5-5

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    3454-3461

  • Publisher name

    ASA

  • Place of publication

    Alexandria

  • Event location

    Seattle

  • Event date

    Aug 8, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article