Paraconsistency properties in degree-preserving fuzzy logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00506967" target="_blank" >RIV/67985807:_____/15:00506967 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/15:00469166
Result on the web
<a href="http://dx.doi.org/10.1007/s00500-014-1489-0" target="_blank" >http://dx.doi.org/10.1007/s00500-014-1489-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-014-1489-0" target="_blank" >10.1007/s00500-014-1489-0</a>
Alternative languages
Result language
angličtina
Original language name
Paraconsistency properties in degree-preserving fuzzy logics
Original language description
Paraconsistent logics are specially tailored to deal with inconsistency, while fuzzy logics primarily deal with graded truth and vagueness. Aiming to find logics that can handle inconsistency and graded truth at once, in this paper we explore the notion of paraconsistent fuzzy logic. We show that degree-preserving fuzzy logics have paraconsistency features and study them as logics of formal inconsistency. We also consider their expansions with additional negation connectives and first-order formalisms and study their paraconsistency properties. Finally, we compare our approach to other paraconsistent logics in the literature.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
531-546
UT code for WoS article
000351409400002
EID of the result in the Scopus database
2-s2.0-84925487902