On the Convergence of Q-OR and Q-MR Krylov Methods for Solving Nonsymmetric Linear Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00454997" target="_blank" >RIV/67985807:_____/16:00454997 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11160/16:10328410
Result on the web
<a href="http://dx.doi.org/10.1007/s10543-015-0564-y" target="_blank" >http://dx.doi.org/10.1007/s10543-015-0564-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10543-015-0564-y" target="_blank" >10.1007/s10543-015-0564-y</a>
Alternative languages
Result language
angličtina
Original language name
On the Convergence of Q-OR and Q-MR Krylov Methods for Solving Nonsymmetric Linear Systems
Original language description
This paper addresses the convergence behavior of Krylov methods for nonsymmetric linear systems which can be classified as quasi-orthogonal (Q-OR) or quasi-minimum residual (Q-MR) methods. It explores, more precisely, whether the influence of eigenvalues is the same when using non-orthonormal bases as it is for the FOM and GMRES methods. It presents parametrizations of the classes of matrices with a given spectrum and right-hand sides generating prescribed Q-OR/Q-MR (quasi) residual norms and discusses non-admissible residual norm sequences. It also gives closed-form expressions of the Q-OR/Q-MR (quasi) residual norms as functions of the eigenvalues and eigenvectors of the matrix of the linear system.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-06684S" target="_blank" >GA13-06684S: Iterative Methods in Computational Mathematics: Analysis, Preconditioning, and Applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bit
ISSN
0006-3835
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
1
Country of publishing house
SE - SWEDEN
Number of pages
21
Pages from-to
77-97
UT code for WoS article
000374411400005
EID of the result in the Scopus database
2-s2.0-84952935275