Data Assimilation of Dead Fuel Moisture Observations from Remote automated Weather Stations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00459808" target="_blank" >RIV/67985807:_____/16:00459808 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1071/WF14085" target="_blank" >http://dx.doi.org/10.1071/WF14085</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1071/WF14085" target="_blank" >10.1071/WF14085</a>
Alternative languages
Result language
angličtina
Original language name
Data Assimilation of Dead Fuel Moisture Observations from Remote automated Weather Stations
Original language description
Fuel moisture has a major influence on the behaviour of wildland fires and is an important underlying factor in fire risk assessment. We propose a method to assimilate dead fuel moisture content (FMC) observations from remote automated weather stations (RAWS) into a time lag fuel moisture model. RAWS are spatially sparse and a mechanism is needed to estimate fuel moisture content at locations potentially distant from observational stations. This is arranged using a trend surface model (TSM), which allows us to account for the effects of topography and atmospheric state on the spatial variability of FMC. At each location of interest, the TSM provides a pseudo-observation, which is assimilated via Kalman filtering. The method is tested with the time lag fuel moisture model in the coupled weather-fire code WRF–SFIRE on 10-h FMC observations from Colorado RAWS in 2013. Using leave-one-out testing we show that the TSM compares favourably with inverse squared distance interpolation as used in the Wildland Fire Assessment System. Finally, we demonstrate that the data assimilation method is able to improve on FMC estimates in unobserved fuel classes.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
DG - Atmospheric sciences, meteorology
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-34856S" target="_blank" >GA13-34856S: Advanced random field methods in data assimilation for short-term weather prediction</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Wildland Fire
ISSN
1049-8001
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
5
Country of publishing house
AU - AUSTRALIA
Number of pages
11
Pages from-to
558-568
UT code for WoS article
000375877900006
EID of the result in the Scopus database
2-s2.0-84968835226