All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sensor Data Air Pollution Prediction by Kernel Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00462723" target="_blank" >RIV/67985807:_____/16:00462723 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CCGrid.2016.80" target="_blank" >http://dx.doi.org/10.1109/CCGrid.2016.80</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CCGrid.2016.80" target="_blank" >10.1109/CCGrid.2016.80</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sensor Data Air Pollution Prediction by Kernel Models

  • Original language description

    Kernel-based neural networks are popular machine learning approach with many successful applications. Regularization networks represent a their special subclass with solid theoretical background and a variety of learning possibilities. In this paper, we focus on single and multi-kernel units, in particular, we describe the architecture of a product unit network, and describe an evolutionary learning algorithm for setting its parameters including different kernels from a dictionary, and optimal split of inputs into individual products. The approach is tested on real-world data from calibration of air-pollution sensor networks, and the performance is compared to several different regression tools.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-18108S" target="_blank" >GA15-18108S: Model complexity of neural, radial, and kernel networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings og the 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

  • ISBN

    978-1-5090-2453-7

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    666-673

  • Publisher name

    IEEE CS

  • Place of publication

    Los Alamitos

  • Event location

    Cartagena de Indias

  • Event date

    May 16, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000382529800091