All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

General Tuning of Weights in MOEA/D

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00469509" target="_blank" >RIV/67985807:_____/16:00469509 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CEC.2016.7743894" target="_blank" >http://dx.doi.org/10.1109/CEC.2016.7743894</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC.2016.7743894" target="_blank" >10.1109/CEC.2016.7743894</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    General Tuning of Weights in MOEA/D

  • Original language description

    In decomposition based algorithms the quality of the resulting solutions depends on the weights used in the decomposition scheme. Usually the weights are generated in the beginning and remain fixed during the evolution, which may lead to poor distribution of solutions along the Pareto front. In this paper, we describe an extension of the popular MOEA/D algorithm which is able to tune the weights in order to find a set of solutions which maximizes a user specified objective. This adaptation is added as a new step to the algorithm which uses an approximation of the Pareto front to find suitable points in the objective space. These points are translated back into weights in such way to lead MOEA/D to find these points.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-19877S" target="_blank" >GA15-19877S: Automated Knowledge and Plan Modeling for Autonomous Robots</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CEC 2016. IEEE Congress on Evolutionary Computation

  • ISBN

    978-1-5090-0623-6

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    965-972

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Vancouver

  • Event date

    Jul 24, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000390749101018