On Square-Increasing Ordered Monoids and Idempotent Semirings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00473662" target="_blank" >RIV/67985807:_____/17:00473662 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00233-017-9853-x" target="_blank" >http://dx.doi.org/10.1007/s00233-017-9853-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00233-017-9853-x" target="_blank" >10.1007/s00233-017-9853-x</a>
Alternative languages
Result language
angličtina
Original language name
On Square-Increasing Ordered Monoids and Idempotent Semirings
Original language description
Let V be the variety of square-increasing idempotent semirings. Its members can be viewed as semilattice-ordered monoids satisfying x <= x^2. We show that the universal theory of V is decidable. In order to prove this result, we investigate the class Q whose members are ordered-monoid subreducts of members from V. In particular, we prove that finitely generated members from Q are well-partially-ordered and residually finite.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GAP202%2F11%2F1632" target="_blank" >GAP202/11/1632: Algebraic Methods in Proof Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Semigroup Forum
ISSN
0037-1912
e-ISSN
—
Volume of the periodical
94
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
297-313
UT code for WoS article
000399173400006
EID of the result in the Scopus database
2-s2.0-85011701994