All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Regression Estimators: A Comparison of Prediction Performance

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00475088" target="_blank" >RIV/67985807:_____/17:00475088 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Regression Estimators: A Comparison of Prediction Performance

  • Original language description

    Regression represents an important methodology for solving numerous tasks of applied econometrics. This paper is devoted to robust estimators of parameters of a linear regression model, which are preferable whenever the data contain or are believed to contain outlying measurements (outliers). While various robust regression estimators are nowadays available in standard statistical packages, the question remains how to choose the most suitable regression method for a particular data set. This paper aims at comparing various regression methods on various data sets. First, the prediction performance of common robust regression estimators are compared on a set of 24 real data sets from public repositories. Further, the results are used as input for a metalearning study over 9 selected features of individual data sets. On the whole, the least trimmed squares turns out to be superior to the least squares or M-estimators in the majority of the data sets, while the process of metalearning does not succeed in a reliable prediction of the most suitable estimator for a given data set.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-01251S" target="_blank" >GA17-01251S: Metalearning for Extraction of Rules with Numerical Consequents</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    MME 2017 Mathematical Methods in Economics

  • ISBN

    978-80-7435-678-0

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    307-312

  • Publisher name

    University of Hradec Králové

  • Place of publication

    Hradec Králové

  • Event location

    Hradec Králové

  • Event date

    Sep 13, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000427151400053