Robust Regression Estimators: A Comparison of Prediction Performance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00475088" target="_blank" >RIV/67985807:_____/17:00475088 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Robust Regression Estimators: A Comparison of Prediction Performance
Original language description
Regression represents an important methodology for solving numerous tasks of applied econometrics. This paper is devoted to robust estimators of parameters of a linear regression model, which are preferable whenever the data contain or are believed to contain outlying measurements (outliers). While various robust regression estimators are nowadays available in standard statistical packages, the question remains how to choose the most suitable regression method for a particular data set. This paper aims at comparing various regression methods on various data sets. First, the prediction performance of common robust regression estimators are compared on a set of 24 real data sets from public repositories. Further, the results are used as input for a metalearning study over 9 selected features of individual data sets. On the whole, the least trimmed squares turns out to be superior to the least squares or M-estimators in the majority of the data sets, while the process of metalearning does not succeed in a reliable prediction of the most suitable estimator for a given data set.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-01251S" target="_blank" >GA17-01251S: Metalearning for Extraction of Rules with Numerical Consequents</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MME 2017 Mathematical Methods in Economics
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
307-312
Publisher name
University of Hradec Králové
Place of publication
Hradec Králové
Event location
Hradec Králové
Event date
Sep 13, 2017
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000427151400053