Spectral Bisection with Two Eigenvectors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477278" target="_blank" >RIV/67985807:_____/17:00477278 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.endm.2017.07.067" target="_blank" >http://dx.doi.org/10.1016/j.endm.2017.07.067</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2017.07.067" target="_blank" >10.1016/j.endm.2017.07.067</a>
Alternative languages
Result language
angličtina
Original language name
Spectral Bisection with Two Eigenvectors
Original language description
We show a spectral bisection algorithm which makes use of the second and third eigenvector of the Laplacian matrix. This algorithm is guaranteed to return a cut that is smaller or equal to the one returned by the classic spectral bisection. To this end, we investigate combinatorial properties of certain configurations of a graph partition. These properties, that we call organized partitions, are shown to be related to the minimality and maximality of a cut. We show that organized partitions are related to the third eigenvector of the Laplacian matrix and give bounds on the minimum cut in terms of organized partitions and eigenvalues.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
August
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
1019-1025
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85026743217