All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral Bisection with Two Eigenvectors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477278" target="_blank" >RIV/67985807:_____/17:00477278 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.endm.2017.07.067" target="_blank" >http://dx.doi.org/10.1016/j.endm.2017.07.067</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.endm.2017.07.067" target="_blank" >10.1016/j.endm.2017.07.067</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral Bisection with Two Eigenvectors

  • Original language description

    We show a spectral bisection algorithm which makes use of the second and third eigenvector of the Laplacian matrix. This algorithm is guaranteed to return a cut that is smaller or equal to the one returned by the classic spectral bisection. To this end, we investigate combinatorial properties of certain configurations of a graph partition. These properties, that we call organized partitions, are shown to be related to the minimality and maximality of a cut. We show that organized partitions are related to the third eigenvector of the Laplacian matrix and give bounds on the minimum cut in terms of organized partitions and eigenvalues.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Notes in Discrete Mathematics

  • ISSN

    1571-0653

  • e-ISSN

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    1019-1025

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85026743217