All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477796" target="_blank" >RIV/67985807:_____/17:00477796 - isvavai.cz</a>

  • Alternative codes found

    RIV/47813059:19520/17:00010816

  • Result on the web

    <a href="http://dx.doi.org/10.1515/demo-2017-0005" target="_blank" >http://dx.doi.org/10.1515/demo-2017-0005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/demo-2017-0005" target="_blank" >10.1515/demo-2017-0005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

  • Original language description

    Several successful approaches to structure determination of hierarchical Archimedean copulas (HACs) proposed in the literature rely on agglomerative clustering and Kendall’s correlation coefficient. However, there has not been presented any theoretical proof justifying such approaches. This work fills this gap and introduces a theorem showing that, given the matrix of the pairwise Kendall correlation coefficients corresponding to a HAC, its structure can be recovered by an agglomerative clustering technique.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA17-01251S" target="_blank" >GA17-01251S: Metalearning for Extraction of Rules with Numerical Consequents</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Dependence Modeling

  • ISSN

    2300-2298

  • e-ISSN

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    13

  • Pages from-to

    75-87

  • UT code for WoS article

    000425045300005

  • EID of the result in the Scopus database

    2-s2.0-85029729711