All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Peeling Potatoes Near-optimally in Near-linear Time

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00478998" target="_blank" >RIV/67985807:_____/17:00478998 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/17:10366168

  • Result on the web

    <a href="http://dx.doi.org/10.1137/16M1079695" target="_blank" >http://dx.doi.org/10.1137/16M1079695</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/16M1079695" target="_blank" >10.1137/16M1079695</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Peeling Potatoes Near-optimally in Near-linear Time

  • Original language description

    We consider the following geometric optimization problem: find a convex polygon of maximum area contained in a given simple polygon $P$ with $n$ vertices. We give a randomized near-linear-time $(1-varepsilon)$-approximation algorithm for this problem: in $O(n( log^2 n + (1/varepsilon^3) log n + 1/varepsilon^4))$ time we find a convex polygon contained in $P$ that, with probability at least $2/3$, has area at least $(1-varepsilon)$ times the area of an optimal solution. We also obtain similar results for the variant of computing a convex polygon inside $P$ with maximum perimeter. To achieve these results we provide new results in geometric probability. The first result is a bound relating the area of the largest convex body inside $P$ to the probability that two points chosen uniformly at random inside $P$ are mutually visible. The second result is a bound on the expected value of the difference between the perimeter of any planar convex body $K$ and the perimeter of the convex hull of a uniform random sample inside $K$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Siam Journal on Computing

  • ISSN

    0097-5397

  • e-ISSN

  • Volume of the periodical

    46

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

    1574-1602

  • UT code for WoS article

    000416763900004

  • EID of the result in the Scopus database

    2-s2.0-85032943193