Automatic Creation of Machine Learning Workflows with Strongly Typed Genetic Programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00481656" target="_blank" >RIV/67985807:_____/17:00481656 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/17:10367219
Result on the web
<a href="http://dx.doi.org/10.1142/S021821301760020X" target="_blank" >http://dx.doi.org/10.1142/S021821301760020X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S021821301760020X" target="_blank" >10.1142/S021821301760020X</a>
Alternative languages
Result language
angličtina
Original language name
Automatic Creation of Machine Learning Workflows with Strongly Typed Genetic Programming
Original language description
Manual creation of machine learning ensembles is a hard and tedious task which requires an expert and a lot of time. In this work we describe a new version of the GP-ML algorithm which uses genetic programming to create machine learning workflows (combinations of preprocessing, classification, and ensembles) automatically, using strongly typed genetic programming and asynchronous evolution. The current version improves the way in which the individuals in the genetic programming are created and allows for much larger workflows. Additionally, we added new machine learning methods. The algorithm is compared to the grid search of the base methods and to its previous versions on a set of problems from the UCI machine learning repository.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-19877S" target="_blank" >GA15-19877S: Automated Knowledge and Plan Modeling for Autonomous Robots</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal on Artificial Intelligence Tools
ISSN
0218-2130
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
—
UT code for WoS article
000413237100006
EID of the result in the Scopus database
2-s2.0-85032862100