A Computational Glimpse at the Leibniz and Frege Hierarchies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00477047" target="_blank" >RIV/67985807:_____/18:00477047 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.apal.2017.07.003" target="_blank" >http://dx.doi.org/10.1016/j.apal.2017.07.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2017.07.003" target="_blank" >10.1016/j.apal.2017.07.003</a>
Alternative languages
Result language
angličtina
Original language name
A Computational Glimpse at the Leibniz and Frege Hierarchies
Original language description
In this paper we consider, from a computational point of view, the problem of classifying logics within the Leibniz and Frege hierarchies typical of abstract algebraic logic. The main result states that, for logics presented syntactically, this problem is in general undecidable. More precisely, we show that there is no algorithm that classifies the logic of a finite consistent Hilbert calculus in the Leibniz and in the Frege hierarchies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA13-14654S" target="_blank" >GA13-14654S: An Order-Based Approach to Non-Classical Propositional and Predicate Logics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
—
Volume of the periodical
169
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
1-20
UT code for WoS article
000416196700001
EID of the result in the Scopus database
2-s2.0-85026378538